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Abstract-In this study, models for simulating transport phenomena occurring during solidification of a 
binary metal alloy are reviewed, with emphasis placed on the benefits and shortcomings of existing 
continuum and two-phase approaches. Linkages between the two approaches are discussed, and volume- 
averaging procedures inherent in the two-phase model are used to develop an extension of the continuum 
model which retains its computational convenience, while eliminating its inability to treat important 
features such as solutal undercooling, nucleation, stereological characteristics of the solid/liquid interface, 
solid movement in the form of floating or settling crystals, and shrinkage. Two approaches to development 
of a mixture momentum equation are considered, one involving evolution from the liquid momentum 
conservation equation and the other involving summation of the liquid and solid momentum equations. 
Special features of both approaches are discussed. In a companion paper, additional models are developed 
to account for the transport (floating and settling) of solid crystals in the melt, solutal undercooling, and 

nucleation. 

1. INTRODUCTION 

Mathematical modeling of transport phenomena 
associated with the casting of metal alloys is becoming 
an important tool for determining the state of the final 
product and for assessing means by which product 
quality may be improved [2-4]. In addition to deter- 
mining temperatures and compositions during sol- 
idification, modeling has the potential to determine 
end-state defects such as macrosegregation patterns, 
void formation, and residual stresses. Since phase 
change typically occurs over a range of temperatures, 
a solid/liquid (mushy) zone separates the melt from 
the fully solidified region, and coupled fluid Ilows in 
the mush and the melt may be induced by buoyancy 
forces, solidification shrinkage, and surface tension 
gradients, as well as by external forces which may be 
imposed on the s,ystem. 

Macrosegregation in the final casting may be influ- 
enced by solid movement in a two-phase slurry region, 
as well as by fluid flow in the mushy zone and the 
melt. The origins of solid movement can often be 
traced to heterogeneous nucleation during the early 
stages of solidification. Heterogeneous nucleation 
typically occurs on surfaces of the mold walls, yielding 
stationary, equiarxed crystals which grow quickly and 
coalesce or are swept into the melt. Crystals which 
remain attached experience preferential growth paral- 
lel, but opposite to, the direction of heat extraction, 
forming columnar dendrites. Recently, Steube and 

t Author to whom correspondence should be addressed. 

Hellawell [5] outlined an alternative approach to 
modeling grain formation in castings, which focused 
on the production, transport, and survival of crystal 
fragments. Crystal fragments detached from the mold 
wall can yield equiaxed grain formation in the bulk 
liquid. The fragments can also be generated in a 
developing columnar mushy zone, as ripening within 
the dendritic structure causes breakage of dendritic 
sidearms from dendritic stalks. Mushy region flows 
can transport dendritic fragments into an undercooled 
region of the melt, where they can grow to form mov- 
ing equiaxed crystals, or to a region of comparatively 
large temperature, where they can melt and be reduced 
to small ‘nuclei’. Developing equiaxed crystals may 
also settle in a gravitational field and accumulate on 
dendrite tips, thereby precluding further advancement 
of a columnar dendritic front and initiating a col- 
umnar-equiaxed transition (CET). The formation of 
fragments and transport of equiaxed crystals is sche- 
matically illustrated in Fig. 1. 

Due to the complexities of dendritic structures, 
detailed microscopic models which account for trans- 
port phenomena in the overall system are beyond the 
capabilities of today’s computing facilities. Hence a 
macroscopic model must provide the starting point 
for treating the effects of transport phenomena, while 
accommodating relevant processes which occur on a 
microscopic scale [6]. Although most of the recent 
solidification models have been applied to stationary 
dendrites, the effect of solid movement on macro- 
segregation has long been recognized and should be 
considered in conjunction with an appropriate model 
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NOMENCLATURE 

area 
body force per unit mass, or 
acceleration 
component of B in the x-coordinate 
direction of a Cartesian system 
specific heat 
particle drag coefficient 
characteristic diameter of solid crystals 
diameter of secondary dendrite arm 
mass diffusion tensor of a species in 
the multi-component mixture 
species concentration of a binary 
mixture (defined in terms of species mass 
fraction) 
difference between interfacial and 
volumetric species concentrations 
mass fraction of solid or liquid phase 
volume fraction of solid or liquid 
phase ; gravitational acceleration 
enthalpy 
thermal conductivity tensor 
permeability tensor 
latent heat of fusion 
Lewis number 
slope of liquidus line 
interfacial momentum transfer rate per 
unit volume 
pressure 
hydraulic resistance tensor 
multiphase Reynolds number 
interfacial area concentration 
time 
equilibrium temperature 
x-velocity component in a Cartesian 
system 
velocity 
control volume 

W mean growth rate of interface 
X x-coordinate of a Cartesian system 
Z Kozeny coefficient. 

Greek symbols 

;r 
solutal expansion coefficient 
thermal expansion coefficient 

I- phase change rate per unit volume 
KO permeability coefficient 

IcP segregation coefficient 
fl dynamic viscosity 
P average mass density. 

Subscripts 
C solutal 
e eutectic 

; 
interface 
liquid phase 

Id liquidus line 

: 
melting, mixture 
initial 

ref reference 
S solid phase 
sd solidus line 
sol solidified 
sP solid packing 
t thermal. 

Superscripts 
d dissipative 
0 reference ; previous time 
t transpose tensor 
V per unit volume 
u c( species component of a binary alloy 
* effective or macroscopic ; prescribed 

value. 

1 

for heterogeneous nucleation. Incorporation of such 
microscopic solid transport phenomena into a macro- 
scopic description of the casting process is an objective 
of the next generation of solidification models. 

Numerous models have been developed for the sol- 
idification of alloys, and comprehensive reviews have 
recently been published [7-91. Remarks will therefore 
be confined to results which bear directly on the objec- 
tives of this study. Of particular interest are those 
models for which the macroscopic conservation equa- 
tions concurrently apply to the solid, mushy and liquid 
regions, thereby facilitating use of a single-domain 
solution with a fixed numerical grid. In one approach 
[l&14], mixture theory is used to develop a set of 
mass, momentum, energy, and species conservation 
equations which may be readily solved with standard 
numerical procedures [I 51. The model has been 
applied to unidirectional solidification processes and 

has successfully predicted important phenomena such 
as diffusive and finger-like double-diffusive convec- 
tion, irregular liquidus front morphology, remelting, 
and macrosegregation patterns such as A-segregates, 
cone segregates and freckles [l&18]. The continuum 
model was subsequently extended to account for 
shrinkage-induced convection by considering the den- 
sity difference between the liquid and solid phases [ 191. 

Although numerical solution of the mixture con- 
tinuum models is easily implemented by using stan- 
dard, single-phase CFD procedures, several key 
assumptions limit their applicability. Solid volume 
fraction, for example, is obtained either from the lever 
rule or the Scheil equation, which presume zero mac- 
rosegregation. Thermal and solutal nonequilibrium is 
not treated, and microstructural effects can only be 
included through formulations for the permeability of 
the mushy zone. Interfacial species transfer is neglec- 
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Fig. 1. Schematic illustration of the development and transport of solid structures: (a) heterogeneous 
nucleation ; (b) generation of fragments and equiaxed crystals ; (c) transport of solid crystals ; (d) packing, 

impinging, coarsening, and final solid structures. 

ted, and either a stationary solid is prescribed or solid 
movement is considered by postulating ad hoc 
relationships between the liquid and solid velocities. 
Moreover, specific interfacial geometry and solid 
structures have not been incorporated into the models, 
and linkages between physical phenomena occurring 
on macroscopic and microscopic scales are generally 
weak. 

An alternative approach to the development of 
macroscopic conservation equations involves use of a 
volume averaging procedure which can be strongly 
linked to ,microscopic conditions. The first usage of 
this technique in a solidification model was made by 
Beckermann and Viskanta [20], who considered flow 

through stationary dendrites in columnar dendritic 
solidification. Ganesan and Poirier [21] also adopted 
this technique to derive the mass and momentum 
equations for flow through a stationary dendritic 
mushy zone, and Ni and Beckermann [22,23] used it 
to develop a two-phase model for solidification of a 
metal alloy. In the two-phase model, separate volume- 
averaged mass, momentum, energy and species con- 
servation equations were derived for the solid and 
liquid phases, thereby permitting a rigorous treatment 
of disparate solid and liquid velocities, thermal and 
solutal nonequilibrium, and interfacial momentum, 
heat and species exchange. Microscopic features can 
be included through the interfacial transfer terms, 
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nucleation models, and stereological formulations 
which account for the geometry of microscopic solid 
structures [23, 241. The two-phase model has been 
applied to columnar dendritic solidification [25] and 
to equiaxed solidification with liquid convection and 
solid movement [26,27]. 

Although the two-phase model has the potential 
to concurrently resolve many important micro and 
macro features of alloy solidification, there are many 
uncertainties involved in the modeling. Major uncer- 
tainties relate to the need for a realistic nucleation 
model, detailed volumetric heat and mass transfer 
coefficients (or thermal and solutal diffusion lengths), 
and correct stereological formulations for interfacial 
area concentration. A good deal of additional research 
is needed before the advantages of the model may be 
fully exploited [S]. In addition, since the model 
requires the evaluation of many variables, the numeri- 
cal procedures required to treat physically meaningful 
systems place a great demand on existing com- 
putational capabilities. 

Recognizing the benefits and shortcomings of both 
the continuum and two-phase models, this study has 
been directed towards extending the capabilities of 
the continuum model, while continuing to couch the 
model equations in forms which are amenable to solu- 
tion by standard numerical procedures. The two- 
phase formulation of Ni and Beckermann [23] is used 
to derive a set ofcontinuum mass, momentum, energy, 
and species conservation equations for which the lim- 
iting assumption of negligible solutal undercooling is 
eliminated, linkages between microscopic and macro- 
scopic phenomena are established, and solid move- 
ment is considered. 

2. MODEL EQUATIONS 

2.1. Mass conservation 
The volume averaged mass conservation equations 

for the solid (s) and liquid (1) phases are given by Ni 
and Beckermann [23] 

; (Wl) + V * G7lPIVJ = 6 (1) 

$ Gw,) + v - 67&V,) = l-s (2) 

where g, p, V, and I refer to the volume fraction, 
mass-averaged density, volume-averaged velocity 
vector, and mass transfer rate due to phase change for 
the respective phases. Summing the equations and 
applying the interfacial mass balance (F, + r, = 0) 
constraint, the following mixture mass conservation 
equation may be obtained : 

~(Pm)+~-~Pmv,) = 0 (3) 

where the mixture density and velocity are defined as 

Pm = 9lPI +gsP‘ vttl = m, +_ms 
and the mass fractions J; and f, are defined as 

(4) 

(5) 

2.2. Momentum conservation 
In the early stages of solidification modeling, the 

influence of interdendritic convection on mac- 
rosegregation was recognized and the mushy region 
was first treated as a porous medium with Darcy’s law 
used to account for the interdendritic flow [28-341. 
Although this law evolved from experimental studies, 
it can be viewed as a simplified form of the liquid 
momentum equation for a porous medium [35]. In 
recent years the liquid momentum equation has been 
used as the basis of solidification models for which 
there is no solid movement [20,21]. Shortcomings of 
the models relate to (i) their restriction to stationary 
columnar structures, and (ii) use of an intrinsic liquid 
velocity as the dependent variable, which precludes 
expression of the complete set of conservation equa- 
tions in a form which is convenient for numerical 
simulation. 

Alternatively, Bennon and Incropera [12] used mix- 
ture theory to obtain mass, momentum, energy, and 
species equations which concurrently apply in the 
melt, mushy and solid regions of a solidification 
system. Although the model allows for treatment of 
solid movement, it was cast in a final form which 
involved a mixture velocity and for which application 
was restricted to stationary solid structures. However, 
problematic issues related to the manner in which the 
Darcy interaction term was included in the mixture 
momentum equation and linkages which may exist 
between this equation and the form of the liquid 
momentum conservation developed for a porous 
medium. Although Prescott et al. [36] addressed these 
matters in their development of the mixture momen- 
tum equation, other issues are in need of clarification. 
For example, Prescott et al. modeled the macroscopic 
stress of the solid phase by using the solid momentum 
equation, rather than a constitutive equation, thereby 
eliminating this momentum equation from further 
use. Their mixture momentum equation was, in fact, 
a special form of the liquid momentum equation 
expressed in terms of a mixture velocity, which pre- 
cluded rigorous consideration of solid transport. In 
numerical simulations based on this model, the solid 
structure was assumed to consist of stationary den- 
drites (V, = 0), and results should be consistent with 
those obtained from the liquid momentum equation 
for a porous medium. 

Voller et al. [14] and Voller [37] adopted the mixture 
momentum equation originally developed by Bennon 
and Incropera [12] and subdivided the mushy region 
into two zones, one consisting of dispersed solid in a 
slurry region (V, = V,) and the other consisting of 
stationary dendrites (V, = 0). The transition between 
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these two regions was obtained by introducing a con- 
solidation factor which served as the coefficient in 
a linear relation between liquid and solid velocities. 
However, their treatment of the consolidation factor 
lacked a physical basis, and to rigorously establish the 
solid and liquid velocities, separate solid and liquid 
momentum conservation equations, or combinations 
thereof, should be used in lieu of the linear relation. 

Relative to recent trends in simulating momentum 
transfer during alloy solidification, two important cri- 
teria for future model development may be identified, 
namely the need to track solid movement while retain- 
ing a set of transport equations amenable to solution 
by standard numerical procedures. Such a model 
should include means by which solid and liquid vel- 
ocities may be rigorously determined and should be 
couched in terms of a mixture velocity to facilitate the 
use of standard CFD solution procedures. 

Two approaches to treating momentum transfer are 
considered in the following subsections. In the first 
approach, evolution of a mixture momentum equa- 
tion from the liquid momentum equation is addressed. 
This approach is an adaptation of that traditionally 
used for porous media, except a mixture velocity is 
introduced rather than an intrinsic liquid velocity. 
Alternatively, a mixture solid/liquid momentum 
model is derived by summing the momentum equa- 
tions for the solid and liquid phases. Linkages between 
the approaches, as well as special characteristics of 
each approach, will also be discussed. 

2.2.1. Liquid momentum model. Conservation of 
liquid momentum remains a requirement until a con- 
trol volume is completely solidified. Hence, as well as 
being applicable to the liquid region of the sol- 
idification system, a liquid momentum equation must 
also be applicable to fluid motion in a stationary den- 
dritic structure and to the equiaxed solidification of 
solid crystals in suspension. For a dispersed flow with 
equiaxed crystal or fragments, the liquid momentum 
equation may be used with a drag coefficient to model 
interfacial momentum transfer. In this case, the set- 
tling and floatin of crystals may be considered to 
investigate the effect of solid movement on mac- 
rosegregation. For a stationary and rigid solid phase, 
the mushy zone may be viewed as a porous medium, 
and the effect of interfacial drag may be represented 
by using Darcy’s law (or an extension thereof) with 
the liquid momentum equation. In this case, the effect 
of interdendritic flow on macrosegregation can be 
examined. 

Relaxing the requirement of a stationary solid, the 
liquid momentum equation may be expressed as [23] 

; (SIPIVI) +v * (sIPIvIvI) 

= -g,Vp, +Mi’+Vpl-, +g,p,B 

+ v - {P: {V(g,Vd + F(aVdl 
- (V]i : Vg, + Vgl : VII)} } a (6) 

The effective macroscopic viscosity of the liquid phase 
pf accounts for presence of the solid phase and a 
turbulent stress [23]. However, its determination 
remains uncertain, and for simplicity it is often taken 
to be equal to the actual liquid viscosity p,. The first 
and fourth terms on the right-hand side account for 
the pressure force and additional forces, which may 
include buoyancy forces and/or externally imposed 
forces on the liquid phase. In a gravitational field, the 
body force per unit mass B is related to the gravi- 
tational acceleration vector. If the liquid density 
varies with temperature and/or solutal concentration, 
Boussinesq’s approximation can be adopted to 
express the buoyancy force in terms of thermal and 
solutal expansion coefficients. The fourth term on the 
right side of equation (6) then reduces to 
g&W- T,~)+&fl-flJ, where Bt and B, are 
the thermal and solutal expansion coefficients and T 
and fl are the local liquid temperature and species 
concentration. 

If the mixture velocity defined by equation (4) is 
selected as the dependent variable, the first term on 
the left-hand side of equation (6) can be expressed as 

; WlVJ = ; (PnlVnJ - ; (gd%V,) (7) 

and the second term, the liquid advection term, can 
be expressed as 

V. (SIPIVIVI) = V. (PnlVlnVln) + V 

* hwIVIVI - PnlVinVln) 

= v ’ (p,V,V,) + v 

* K > F (v,-V,)(V,-V,) 
I I 

-v* (S.PSV8V.h (8) 
The third term on the right-hand side of equation 

(6) represents interfacial momentum transfer due to 
phase change, and it has been expressed in terms of 
the product of the phase change rate per unit volume 
and the liquid interfacial velocity. The liquid and solid 
interfacial velocities can be expressed in terms of an 
absolute interface velocity and a mean growth rate 
due to phase change at the solid/liquid interface [38]. 
That is, 

Vii =Vi+WI and V,i =Vi+W, (9) 

where the mean growth rates of the liquid and solid 
phases, WI and W,, can be calculated through incor- 
poration of a kinetic law for the growth and formation 
of microstructures. Alternatively, they can be expre- 
ssed as [38] 

wl=$Vg, and W8=-$vgs. (10) 
” I ” I 

Thus, with Vg, = -Vgl and I, = -I-., the liquid 
interfacial velocity can be expressed as [23] 
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Vii = Vsi_ (p-Qrqg,. 
P,P& 

(11) 

The interfacial area concentration, S,, is defined as 
the total solid/liquid interfacial area within a control 
volume (4,/V,) and is used to characterize first-order 
geometric effects. In general, it is a function of the 
solid volume fraction and solid/liquid interface 
geometry, and appropriate expressions may be for- 
mulated through stereological descriptions of the 
interface. For translational motion of rigid solid crys- 
tals, it is reasonable to assume that 

v,i = v,. (12) 

With equation (1 l), the model for interfacial 
momentum transfer due to phase change accounts for 
the influence of density differences between the solid 
and liquid phases. The effect may become important 
under conditions for which shrinkage induced flow 
is significant. For example, in the absence of other 
mechanisms for sustaining liquid flow, once sol- 
idification begins with pS > pi, the third term on the 
right-hand side of equation (6) provides the driving 
force for shrinkage-induced liquid flow. The direction 
of the induced flow opposes that of the solidification 
direction, and its magnitude depends on the density 
difference, interfacial area concentration, gradient of 
the solid volume fraction, and the phase change rate. 

The fifth term on the right-hand side of equation 
(6) is the total liquid macroscopic viscous stress, which 
can also be expressed as 

V * M PbAV,) + [V(SlVJl’ 
-(V,,:Vg,+Vg,:V,,)II 

+V’{/l:{V,i:Vg,+Vgs:V,i}}. (13) 

The first term on the right-hand side of equation (13) 
is the standard viscous stress, while the second term 
accounts for the effect of solid and/or liquid phase 
density changes on the total macroscopic viscous 
stress. The fifth term on the right-hand side of equa- 

tion (13) accounts for the contribution of interface 
motion to the liquid viscous stress [23, 381. The third 
and fourth terms account for solid movement and 
vanish for the limiting case of stationary dendrites. In 
this limit the first and second terms reduce to the 
standard form of the macroscopic stress for a liquid 
phase. In the limit of equivalent phase densities, the 
second term vanishes, V,, = V, [see equation (1 l)], and 
the fourth and fifth terms cancel, while the first and 
third terms reduce to standard forms of the liquid and 
solid viscous stresses. Note that the second and fourth 
terms do not provide driving forces for flow induced 
by density changes (that is, shrinkage induced flow), 
but simply represent contributions to the total macro- 
scopic stress due to density differences between the 
solid and liquid phases. 

The second term on the right-hand side of equation 
(6) represents momentum transfer due to interfacial 
interactions between the liquid and solid phases. This 
term is proportional to the difference between the 
intrinsic volume-averaged velocities of the solid and 
liquid and may be expressed as [23] 

M; = -R: (V,-V,) = - 2: (V,-V,) (14) 

where R is a hydraulic resistance tensor. Generaiized 
mathematical models for the tensor are provided by 
Ni and Beckermann [23]. 

Momentum transfer due to interfacial interactions 
between the liquid and solid phases may be expressed 
in terms of a drag coefficient for the movement of 
equiaxed crystals in the melt [39]. That is, 

MP =~gspIZIV,-V,l(V,-V,) 
s 

= -~~PmC~lVr-VIl~v~-V~~ (1% 
s 1 

where ds is a characteristic diameter of the solid crys- 
tals. The drag coefficient C, may be expressed in terms 
of a multiphase Reynolds number, 

where p,,, is the mixture viscosity. From rheological 
considerations, the mixture viscosity can be expressed 
as [39] 

pm= 1-E 

( > 

-2.59so 

PI (17) 

where g, is the maximum packing fraction of the solid 
phase. 

Momentum transfer due to interfacial interactions 
between the liquid and solid phases may also be expre- 
ssed in terms of a permeability tensor for flow through 
a continuous solid structure such as columnar den- 
dritic arrays. In particular, 

M; = -gi.yK-’ : (V,-V,) (18) 
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where K is the permeability tensor of an anisotropic where u, is the mixture velocity component in the x 
dendritic structure. direction. 

Although rigorous models of the permeability com- 
ponents for anisot:ropic solid structures are lacking, 
experimental data are available [40,41]. In most simu- 
lations, the solid structures (equiaxed crystals or col- 
umnar dendrites) are usually assumed to be isotropic, 
and the Kozeny-Carman expression may be utilized 
to express the permeability as g:&/[Z(l -gJ’] or 
rcOg:/(l -g,)“, where Z, d, and K,, are the Kozeny 
coefficient, a characteristic length of the solid struc- 
ture, and the permmeability coefficient, respectively. 

Substituting from equations (7) (8), (13) and (14), 
the mixture momentum conservation equation, equa- 
tion (6), can be expressed as 

2.2.2. Mixture momentum model. In an alternative 
approach, one may apply the Navier-Stokes equa- 
tions to both the liquid and solid phases, with the 
solid treated as a pseudo-fluid, and the equations may 
be summed to obtain a mixture momentum equation. 
Such an approach has been successfully applied to 
multi-particulate systems, such as a suspended par- 
ticulate flow or a fluidized bed [42]. However, for 
stationary solids such as columnar dendrites attached 
to a mold wall or packed equiaxed crystals, the solid 
may not be treated as a pseudo-fluid and the solid 
transport momentum equation is no longer valid. 
Nevertheless, since the solid is stationary, the liquid 
equation governs momentum transport for the mix- 
ture and the interdendritic flow can be treated as liquid 
flow through a porous medium. However, a critical 
issue relates to the transition from a suspended par- 
ticulate system to a packed bed or otherwise stationary 
solid. Complicating features include the non-New- 
tonian rheological behavior of a dense solid suspen- 
sion, the dynamics of solid particle impingement and 
adhesion, and force interactions with system bound- 
aries. To accommodate the transition to zero-velocity 
of the solid phase when a slurry of suspended particles 
agglomerates or attaches to a dendritic front, one 
needs a mathematical model which can account for 
solid crystal movement and convert this movement to 
a stationary state. 

; (PlnVnJ +v* hnvnlvld 

I 

-v*{ii: ps: (vf$g+(v~):v.]} 
+v~{~~[v~i~07~~~+~v~*~~v~i1}~ (19) 

For the x-coordirrate direction of a Cartesian system, 
the equation becomes 

R,P,, = _g,g_-. glpI G4n -us) + uJ, 

+g,pJL-V* 

The solid momentum equation can be expressed as 
1231 

~(g,p,V.)+V.(s.p,V,V,) 

= -_g,Vp,+M~+V,iT,+g,P,B 

+v * bc:Iwl,v~) + [v(gsV,)l’ 

-Wsi:vgs+vgs:v8i)}} 

= -gsVp,+W’+VJ,+gsp,B 

f v * { ssP:Ps + (VV,)‘l} (21) 
where VSi has been replaced by V, from equation (12). 
A mixture momentum equation can be obtained by 
summing momentum equations for the liquid and 
solid phases, equations (6) and (21), and utilizing an 
interfacial momentum balance. of the form (231, 
v,iI,+ VJs + Mi’ + Mf = 0, to yield 

~(Pnxl)+v~(Plxllv,) 

= -mvp,-%Vp,+P,B-V 
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*{/if [V.:v(f=)+v(~):vJ-v 

- kw,*[vv, + (VV,)‘lI. (22) 

The result is similar to equation (19), except that (i) 
the interfacial momentum transfer terms are absent, 
(ii) there is a pressure gradient term for the solid 
phase, (iii) the buoyancy force is expressed in terms of 
the mixture density, (iv) solid transient and advection 
momentum transport terms are absent on the right- 
hand side of equation (22), and (v) a macroscopic 
solid viscous stress appears as the tenth term on the 
right-hand side of equation (22). The solid macro- 
scopic viscous stress has been expressed in terms of 
the derivative of the solid velocity and an effective 
solid viscosity, p(:, which, from the rheology of sus- 
pensions, can be modeled as [27] 

( > 
l-9” 

-2.5gsp 

--l+g, 
p* _ kl- (1 -ssM BSP 

s- = 
gs 98 

p:. 

(23) 

Equation (22) may be simplified for a dispersed flow 
of crystals and for a system of stationary dendrites. 

2.2.2(a). Dispersed flow with moving equiaxed 
crystals. For a dispersed flow with moving equiaxed 
crystals, mechanical equilibrium may be assumed [43], 
in which case ps = p, = p, where p is the equilibrium 
pressure. The mixture momentum equation (22) then 
reduces to 

-&L)+v%J.VJ.) 

= -Vp+p,B-V- 
[( > 

y (VII, -V,)(Vnl -V,) I 1 
+v- P:~[vv.+(w,)tl 

+ v ’ {Pi+ [vii : P 9s) + (V 4%) : v1i1} 

+ v - k7srmvs + (VVs)‘l) 1 (24) 

In the x-coordinate direction of a Cartesian system, 
the equation can be expressed as 

&&,)+v~(P,V&,) = 

-z +p,l3,-v. [( ) 7 (VIII-V,)(u,-u,) +v 
I 1 

.(,:~vu,)+v.[,:,v(~)]-v 

+e$vU.)-v.[p:U,V(~)]+v 
* W~s(Vgs)l +v* b&w. (25) 
2.2.2(b). Stationary mushy zone. When the solid 

structure is stationary, the solid phase cannot be 
treated as a pseudo-fluid and the pressure and stress 
imposed by the liquid phase at the solid/liquid inter- 
face can be transferred through the solid phase. 
Hence, there is a pressure field within the solid phase, 
which must be balanced with the interfacial momen- 
tum transfer if forces are assumed not to be transferred 
to the mold wall through the solid and deformation 
of the solid is neglected. From specialization of the 
solid momentum equation, equation (21), for zero 
velocity of the solid phase, it follows that 

-g,Vp, + Mf + V,,Ts +gsPsB = 0. (26) 

Obtaining the solid pressure gradient from the above 
relation and introducing the interfacial momentum 
balance, VJ, +Mt = -Mf -V,,r,, the mixture 
momentum equation, equation (22), for zero solid 
movement (V, = 0) becomes 

+V 

’ {FC:WIi : Fgs) + (Vi72 : vhlJ (27) 

where, in this case, l’,, = -(p,-p,)T,/(p.p,S,z)Vg, 
and Vsi = V, = 0. 

Although a summation procedure involving the 
solid and liquid momentum equations was used, the 
mixture momentum equation contains the liquid inter- 
facial momentum transfer terms. Interfacial inter- 
actions manifested by the second term on the right- 
hand side of equation (27) may be modeled by equa- 
tion (18) and hence through use of a permeability. 
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(i) Formulation devel,oped by Prescott et al. [36] : 

$P&d+v-(Pmvdm) = -wg-~(ud 

+sIPI&--v* 
[( > 

y (Vln-V,) (u, -4 ] + $ @.Psu.) +v* @,P,Vs~*) 

+v~oc:vu”)-~~[u,v~~+2vu.~vf,]. 

(ii) Formulation developed from liquid momentum equation (model 1) : 

i (Anurn) + V ’ (PmVm%) = --91 g - % (Urn -4) + Ri rl 

(29) 

(iii) Formulation developed from superposition of the solid and liquid momentum equations (model 2) : 
for dispersed flow with moving equiaxed crystals 

+ v * w Uli P s.)l + v * Lwm.1 
for stationary columnar structure and packed equiaxed crystals or fragments 

(25) 

-v’[(~)V,u,]+V’(p:~V..)+V.[~~u,V(~)]+V.~tqi(Vg,)l. (28) 

In the x-coordinate direction of a Cartesian system, 
equation (27) can be written as 

2.2.3. Compari:;on of alternative formulations of the 
mixture momentum equation. Various formulations of 
the x-momentum equation for a solidification system 
are summarized in Table 1. Except for terms account- 
ing for interfacial momentum transfer due to phase 
change and the contribution of interface motion to 
the liquid viscous stress [third and twelfth terms on 
the right-hand side of equation (20)], the first model, 
equation (20), is equivalent to that developed by Pre- 
scott et al. [36], equation (29) in Table 1, if the assump- 
tions of Prescott et al. (pm/p, = 1, V’u, = 0, and con- 

stant cl:) are applied to equation (20). Since the solid 
stress was modeled through the solid momentum 
equation in the derivation of equation (29), rather 
than through use of an additional constitutive equa- 
tion, the final model equation of Prescott et al. [36] is 
actually the liquid momentum equation, but expressed 
in terms of the mixture velocity. Hence, it should be 
equivalent to model 1. 

Since the mixture momentum equation for model 2 
of this study is obtained by summing the liquid and 
solid momentum equations, the solid transport terms 
do not appear on the right-hand side of equation (28). 
However, in addition to terms associated with the 
macroscopic liquid viscous stress, a term associated 
with the macroscopic solid stress appears in the final 
result. However, for a dispersed flow with low ga the 
effective solid viscosity is approximately equal to the 
liquid viscosity [see equation (23)] and the sixth and 
ninth terms on the right-hand side of equation (25) 
cancel each other in the case of equivalent phase den- 
sities. In this case the solid viscous stress term does 
not appear in the final result. 

For a dispersed flow with moving equiaxed crystals 
or fragments, pressure equilibrium eliminates all of 
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the interfacial momentum transfer terms through the 
interfacial momentum balance, and the effective solid 
stress is modeled in terms of a solid velocity gradient 
by treating the solid as pseudo-fluid. In both the first 
and second models, an additional solid transport 
equation is needed to account for crystal settling/ 
floating and is developed in the companion paper [I]. 

For a stationary solid structure, the solid velocity 
is zero but the interfacial momentum transfer terms 
are retained in the final form of the momentum equa- 
tion. Although it is not clear how to model the solid 
stress for a stationary solid, the term may be equated 
to zero if the solid is assumed to be rigid and defor- 
mation is neglected. With zero solid velocity and equi- 
valent phase densities, equations (20), (28) and (29) 
yield equivalent results. 

Preference for the model 1 or model 2 rep- 
resentation of the momentum equation is somewhat 
arbitrary and may depend upon the nature of sol- 
idification conditions. If, for example, the average 
solid and liquid velocities are comparable, the two 
phases may be said to be well mixed and model 2, 
which originates from mixture momentum con- 
siderations, may be preferred. If, however, liquid flow 
conditions are intense and of special interest, model 1, 
which originates from the liquid momentum equation, 
may be preferred. 

Except for the model 2 version of the momentum 
equation for a dispersed flow, where pressure equi- 
librium is imposed, the pressure gradient term in the 
other forms of the momentum equation includes the 
liquid volume fraction. Prescott et al. [36] converted 
this term to a standard form by utilizing a version 
of Darcy’s law which included the pressure gradient, 
buoyancy force, and Darcy damping terms. This 
transformation is only valid for stationary solids with 
negligible inertia effects. However, the pressure gradi- 
ent term may be expressed as 

-rnVP, = -VP, SgsVPl (30) 

which is a form better suited for CFD. If the solid 
fraction is small, the last term is negligible and the 
equation reduces to that for pressure equilibrium in a 
dispersed flow. 

2.3. Energy conservation 
In the solidification of metal alloys, conditions may 

be influenced by solutal and thermal undercooling, 
and generally such effects should be included in a 
process model. However, since the Lewis number of a 
liquid metal is large (Lek lOOO), thermal equilibrium 
is readily maintained and nonequilibrium effects are 
more strongly influenced by solutal undercooling. 
Assuming thermal equilibrium to exist interfacially 
and volumetrically, Tri = Tsi = T, = T, = T, the 
requirement of energy conservation may be expressed 
in terms of the mixture equation used in the 
continuum solidification model [12], which is of the 
form 

-V.[P,(h,-h,)(V,-V,)l. (31) 
This equation can also be obtained by summing enegy 
conservation equations for the solid and liquid phases 
[23] and using an interfacial energy balance. The mix- 
ture enthalpy and thermal conductivity tensor are 
defined, respectively, as h, =f;h, +f,h, and 
k, = g,kr +g,kz. The effective macroscopic thermal 
conductivities, kf and k,* account for the presence of 
the solid phase and a dispersive flux (such as a tur- 
bulent heat flux) [23]. In general, the macroscopic 
thermal conductivities are different from their micro- 
scopic counterparts. However, little research has been 
performed on this issue, and the macroscopic thermal 
conductivities are typically equated to the microscopic 
quantities. 

The liquid and solid enthalpies are related to the 
equilibrium temperature through the following ther- 
modynamic relations : 

h, = c,,T+h’ and h, = cpsT (32) 

where ho is the reference enthalpy, given by 
(cpS - cr,) T, + L, and L is the latent heat of fusion at 
the eutectic temperature. In deriving equation (31) 
the temperature gradient has been expressed in terms 
of the solid enthalpy by using equation (32) with the 
definition of the mixture enthalpy. 

Once the mixture enthalpy is known, the equi- 
librium temperature may be determined from the 
expression 

T = hm -0’ 
% (33) 

and the enthalpies of the liquid and solid phases can 
then be determined from equation (32). The mixture 
specific heat cr,,, is defined as J;c,,+f,c,. During the 
eutectic reaction (T = T,), the mixture enthalpy can 
alternatively be used to determine the solid mass frac- 
tion and details are presented in Section 2.5. 

2.4. Species conservation 
The species mixture conservation equation can be 

obtained by summing the species conservation equa- 
tions of the solid and liquid phases [23] to yield 

~(P,~)+v*(PJX) 

= V.(pm@:VfP)-V 

* [PInwIn -v,KG -_ml+ v * hnfs~Ff:) 

= V.(~,D,v~,)+v.(p,~f;D:v(~-~) 

-v*bmwm-V.uf-fE>l 

+ 0 * h,,f,DtV(.C -X-3 (34) 
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wherefm and D,are the mixture species concentration 
and effective mac:roscopic species diffusivity, defined 
aspn = JSp +fJ: and D, = f;Df +fsD,*, respectively. 
The effective macroscopic species diffusivities of, the 
liquid and solid p’hases, 0: and D,*, account for exis- 
tence of the solid phase and a solutal dispersive flux 
[23]. Without definitive knowledge of these quantities, 
however, the macroscopic species diffusivities are sim- 
ply equated to the microscopic quantities. Typically, 
diffusion in the ‘f;olid is ‘negligible” and .the mixture 
species diffusivity D, reduces to f;D:. Equation (34) 
is then identical to the mixture species equation 
developed by Bennon and Incropera [ 121. 

In the traditional mixture continuum model, non- 
equilibrium effects due to solutal undercooling are not 
considered, and species concentrations in the solid 
and liquid phases, are obtained from the phase diag- 
ram and the lever rule. Other assumptions implicit in 
this model include equivalent interfacial and average 
species concentrations for the solidand liquid, thermal 
equilibrium, no solid movement, and negligible den- 
sity differences in the solid and liquid phases. As well 
as allowing for solid motion, assumptions which 
should be relaxed relate to the inclusion of non- 
equilibrium effects due to solutal undercooling of the 
liquid and liquid interfacial species transfer. These 
considerations are discussed in the following sections. 

2.5. Solid mass fraction and phase compositions 
In the continuum solidification model, the solid 

mass fraction fs is indirectly determined from sup- 
plemental relations (thermodynamic and phase diag- 
ram relations) and not directly by computing the inter- 
facial mass transfer rate, IS, as in the two-phase model 
[27]. The solid volume fraction gS and the phase 
change rate IY, are related to each other through the 
solid mass conservation requirement, equation (2). 
For a general (primary or off-eutectic) solidification 
process, the solid mass fraction may be calculated 
from knowledge of the mixture species concentration 
(obtained from the species conservation equation) and 
the interfacial species concentrations of the solid and 
liquid phases, which are related to the equilibrium 
temperature through the phase diagram. For a eutec- 
tic reaction, it ma.y be necessary to consider coexisting 
a and j? solid phases, as well as a liquid phase [41]. 
For simplicity, however, the reaction may be treated 
as isothermal and interfacial species concentrations of 
the solid (a and/or /I) and liquid phases may be equa- 
ted, thereby eliminating interfacial species transport. 
In this case, the solid mass fraction must be obtained 
from the mixture enthalpy and hence by solving the 
mixture energy equation. Therefore, for the general 
(off-eutectic) and1 special (eutectic) reactions, the solid 
mass fraction and the solid and liquid species con- 
centrations are calculated from separate procedures. 
When the mixture temperature exceeds the liquidus 
temperature (T ~3 T,& or h, > hid), solidification does 
not occur and temperature is calculated from equation 
(33) withh = 1. The liquidus temperature is calculated 

from the phase diagram (see Fig. 2), and the enthalpy 
associated with the liquidus temperature is calculated 
from equation (32). For example, for a binary alloy 
of initial composition fz less than the eutectic com- 
positionfi, the liquidus temperature and enthalpy can 
be expressed as 

T,d = T:+ and h,, = cPl T,,, f ho. 

(35) 
2.5.1. General (off-eutectic) solidification. When the 

melt is cooled to a temperature below the liquidus 
temperature, solidification occurs over a range 
of temperatures (T, < T < T,d) and enthalpies 
(h, < h, < hid), where h, is the enthalpy associated 
with a two-phase mixture of primary solid and liquid 
at the eutectic temperature. From the definition of the 
mixture species concentration, the solid mass fraction 
may be expressed as 

If the solid and liquid phases are assumed to be well- 
mixed, it follows that 

and 

fp=fi (37) 

fZ =fZi (38) 

and consideration of nonequilibrium effects due to 
solutal undercooling is precluded. Solid and liquid 
phase concentrations can then be determined by using 
relations based on characteristics of the equilibrium 
phase diagram (T,,fi, K~, and Pm), shown in Fig. 2, 
with knowledge of the equilibrium temperature T. 

If diffusion in the solid is considered, the volume- 
averaged solid species concentration is not equal to 
the interfacial solid species concentration and may be 
expressed as 

_C =f:,-AfZ (39) 

where the difference Afi depends on species diffusion 
in the solid, crystal or dendrite growth rate, interfacial 
geometry, and solid structure. Modeling of microscale 
finite rate solutal diffusion in the solid is essential to 
predicting microsegregation. Ohnaka [44], for ex- 
ample, has used the assumption of parabolic con- 
centration profiles in individual dendrites to obtain 
predictions of microsegregation, which are in good 
agreement with experimental results. By representing 
the dendritic structure in terms of simple geometries 
(planar, cylindrical, or spherical), the volume aver- 
aged solid species concentration can be obtained in 
terms of the interfacial concentration, mass diffusivity, 
and structure of the solid, including its characteristic 
length. The analysis involves integrating the solute 
concentration over the microscopic scale associated 
with the control volume. However, under conditions 
for which macroscopic transport is significant, micro- 
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Fig. 2. Typical equilibrium phase diagram for a binary alloy system (a-j?). 

segregation effects may often be neglected and equa- 
tion (38) used as a first approximation. 

In a real crystal or dendrite growth process, 
diffusion in the liquid is not complete and there is 
accumulation of solute at the liquid side of the inter- 
face, as well as in a boundary layer adjoining the 
interface. The assumption of a well-mixed solute in 
the liquid (the lever rule) is inconsistent with the exis- 
tence of nonequilibrium due to solutal undercooling, 
precluding substitution of the interfacial liquid species 
concentration for the volume averaged liquid species 
concentration. Hence, similar to equation (39), the 
liquid species concentration can be expressed as 

fl =fZ-AE W) 

where Afp is the solutal undercooling, which accounts 
for the difference between the interfacial and volume 
averaged liquid species concentrations. Hence, 
through development of an appropriate model for 
Afl, nonequilibrium effects due to solutal under- 
cooling may be considered. Such a model is discussed 
in the companion paper [ 11. 

The interfacial liquid and solid species concen- 
trations,f” andfii, may be related to the equilibrium 
temperature through relations inferred from the equi- 
librium phase diagram (see Fig. 2). For example, for 
a binary alloy of initial compositionf”, less than the 
eutectic composition, one has 

x= T- T” 
;fZ and fii = rcpfi T,-T: 

(41) 

where the liquidus and solidus lines have been linear- 
ized. 

Once the interfacial concentrations,fli andfs, and 
the concentration differences, AR and AR, are deter- 
mined, equation (36) can be used to obtain the solid 
mass fraction by substituting for the average species 
concentrations of the solid and liquid phases from 
equations (39) and (40), and for the mixture species 
concentration determined from the mixture con- 
servation equation, equation (34). A numerical iter- 
ation procedure would be used to compute the solid 
mass fraction and to thereby account for solutal non- 
equilibrium effects. 

The enthalpy associated with a two-phase mixture 
of primary solid and liquid at the eutectic temperature 
can be expressed as [ 181 

k = (1 -.LXc,,T,+~“)+_Lc,T, = c,T,+ (1 -LW 

(42) 

where the solid mass fraction at the onset of a eutectic 
reaction, 6, can be calculated from equation (36) 

f _fy 
sc A,-fZ 

The solubility limit of the solid phaseytic can also be 
obtained from the phase diagram (Fig. 2). For a 
binary mixture of Al-Cu or Pb-Sn, it can be expressed 
as KJ& while for a binary mixture of NH&l-H,0 it 
is zero. Iff”m <y$, there is no eutectic reaction and 
liquid is solidified to the a solid phase. In this case, 
fi = 1 when TG Tti = G+KT,- T:)/$fc]& 
where T; is the melting point of the pure species a. 

2.5.2. Eutectic reaction. For a eutectic reaction, the 
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temperature and the interfacial species concentrations 
of the solid and liquid phases are 

T= T, and fi =f$ =fi. (44) 

During a eutectic reaction, the mixture enthalpy 
decreases from h, to h,,,( = cpsTe). Since the liquid and 
interfacial liquid compositions are well mixed, solutal 
undercooling is mgligible and the volume averaged 
liquid and solid concentrations can be expressed as 

fP=f[=.f,” and fl=‘y. (45) 
s 

Since the temperature is known, the definition of the 
mixture enthalpy can be used to calculate the solid 
mass fraction from the following expression : 

fs = l-(l-&e,kI$ = l-hm-pT, (46) 
e PS e 

CONCLUSIONS 

Existing continuum and two-phase models for sol- 
idification of binary mixtures are assessed in terms of 
advantages and shortcomings, and a new model is 
proposed which retains the operational convenience 
of the continuum model, while allowing for the 
inclusion of important features of the two-phase 
model. Several assumptions inherent in the original 
formulation of the continuum model are relaxed, 
making it possible to account for the effects of solutal 
undercooling, solidification shrinkage, and solid 
movement. 

The model consists of a set of macroscopic con- 
tinuum equations governing the conservation of mass, 
momentum, energy, and species in a binary mixture. 
They are equations (3), (19), (31) and (34) and are 
expressed in terms of the mixture density P,,,, velocity 
V,, enthalpy h,, and species concentration pm. The 
formulation of the mixture momentum equation 
expressed by equation (19) is preferred because of its 
applicability to both dispersed and stationary solid 
phases and because of the numerical convenience it 
affords. Constitutive equations for the viscous stress 
and the thermal and mass diffusive fluxes have been 
included in the model equations, and supplemental 
relations are provided to compute the requisite phase 
interaction quantities. Enthalpies of the solid and 
liquid phases can be calculated from thermodynamic 
relations, equations (32), and the species con- 
centrations of th,e solid and liquid phases can be 
obtained from equations (39) and (40), where con- 
sideration is given to interfacial species variables and 
solutal undercooling. The interfacial momentum 
transfer term due to interactions between the liquid 
and solid phases is modeled in terms of a drag 
coefficient for the movement of equiaxed crystals in 
the melt [equation (15)] or a permeability tensor for 
flow through a continuous solid structure [equation 
(18)]. The interfacial species concentrations of the 
solid and liquid phases are determined from phase 

diagram relations as, for example, from equation (41). 
During off-eutectic solidification, the solid mass frac- 
tion is calculated from an equilibrium model, equation 
(36), and the equilibrium temperature is determined 
from equation (33). For a eutectic reaction at which 
the temperature is known, the solid mass fraction is 
calculated from equation (46). 

To complete the model development, it is necessary 
to establish relations between solid and liquid velocity 
components under conditions involving solid move- 
ment and to develop models for solutal undercooling 
and the rate of the crystal nucleation. Such models 
are linked to microscopic features of solidification and 
provided by Ni and Incropera [l]. 
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